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Abstract— Three dimensional flow of non-Newtonian viscoelastic fluid with the variation in the viscosity over a stretching surface is 

investigated. The governing partial differential equations of continuity, momemtum, energy and concentration are transformed into non-

linear ordinary differential equations by using similarity transformations. The transformed equations are solved numerically by fourth-order 

Runge-Kutta shooting method. The effects of viscosity, heat and the stretching ratio parameters with Prandtle and Schmidt numbers on the 

velocity, temperature and concentration distributions have been discussed and illustrated graphically.  

Index Terms— Boundary layer, heat transfer, non-newtonian ,  stretching surface,  three-dimensional flow,  thermal conductivity ,  Variable 

viscosity, Visco-elastic fluid.    

                                                               ——————————      —————————— 

1 INTRODUCTION                                                                     

HE study of flow over a stretching surface has generated 
much interested in recent years in view of its numerous 
industrial applications such as extrusion of polymer 

sheets, continuous casting, glass blowing, rolling and manu-
facturing plastic flims and artificial fibers. Sakiadis [1] was 
probably the first to study the two-dimensional boundary lay-
er flow due to a stretching surface in a fluid at rest. An exten-
sion of the problem to the case of suction or injection at the 
surface was investigated by Ericson et al [2].  Crane [3] and Ali 
[4] carried out a study for a staeching surface subject to suc-
tion or injection for uniform and variable surface tempera-
tures. Chakrabarti and Gupta [5] studied the temperature dis-
tribution in this MHD boundary layer flow over a stretching 
sheet in the presence of suction. There are several extensions 
to this problem, which include consideration of more general 
stretching velocity and the heat transfer.  

The heat transfer in flow over a stretching surface was in-
vestigated by Gupta and Gupta et al. [6], where the surfaces 
held at constant temperature and is subject to suction and 
blowing.  

Interest of researchers in the flows of non-Newtonian fluids 
in the presence of heat transfer have relevance in food enggi-
neering, petroleum production, 
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 power engineering and in industrial processes including pol-
ymer melt and polymer solutions used in the plastic pro-
cessing industries. Some recent studies of the topic can be seen 
in Labropulu et al [7], Sahoo [8], Mustafa et al [9], Hayet et al 
[10]. It is noted that most studies in the literature discussed the 
two-dimensional boundary layer flows. 

 
The problem of three-dimensional boundary layer flow of a 

viscoelastic fluid due to a stretching surface, has been consid-
ered before as Hayet et al [11] without mass and heat transfer. 
Fox et al [12] used both exat and approximate methods to ex-
amine the boundary layer flow of a viscoelastic fluid charac-
terized by a power law model. Vajravelu and Rollins [13] in-
vestigated the heat transfer of the boundary layer flow of se-
cond grade fluid. Mahantesh et al [14] discussed the flow and 
heat transfer charecteristics of a viscoelastic fluid in a porous 
medium over an impermeable stretching sheet with viscous 
dissipation. 

In most of the studies of this type of problems, the viscosity 
and thermal conductivity of the ambient fluid were assumed 
to be constant. However, Hussanien et al [15] revealed that the 
fluid viscosity and thermal conductivity might function of 
temperatures. It is known that these physical properties can 
change significantly with temperature and when the effects of 
variable viscosity and thermal conductivity are taken in to 
account, the flow charecteristics are significantly changed 
compered to the constant property case.  

In this paper, we investigate the steady three dimensional 
laminar boundary layer flow of viscous incompressible second 
grade fluid over a stretching surface, when the viscosity and 
the thermal conductivity are function of temperature. By em-

T 
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ploying the similarity transformation, the boundary layer 
equations governing the flow are reduced to ordinary differ-
ential equations and solved numerically using fourth-order 
Runga-Kutta shooting method. 

2   MATHEMATICAL FORMULATION  

We consider the steady three dimensional flow of a viscous 
incompressible second grade fluid bounded by a stretching 
surface. Under the usual boundary layer approximations the 
flow is governed by the following equations: 
 
The equation of continuity 
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The equation of momentum: 
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                    (3) 
The energy equation: 
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And the concentration equation: 
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Where the velocity components in the ,x  y   and z   direc-

tions are denoted by ,u  v  and w  respectivly,   is the fluid 

density, 





 is the Kinemetic viscosity,   is the viscosity, 

0k  is the material parameter, 
pC  is the specific heat at constant 

pressure, k  is the thermal conductivity, T  is temperature of 

the fluid flow, C  is the mass concentration of the species of 

the flow, Q  is the volumetric rate of heat genera-

tion/absorption, D  is the molecular diffusion coefficient, T
 

and C
 are the fluid temperature and concentration far away 

and 
1  is the reaction rate coefficient. 

 In most of the studies, of this type of problems, the viscosi-
ty and thermal conductivity of the fluid were assumed to be 
constant. However, it is known that physical properties can 
change significantly with temperature and when the effects of 
variable viscosity and thermal conductivity are taken in to 
account, the flow characteristics are substantially changed 
compared to the constant property case. Hence in the problem 
under consideration, the viscosity and thermal conductivity 
have been assumed to be inverse linear functions of tempera-
ture. We assume, 
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Where  1b  , 1c  ,  eT  and  rT  are constants and their values de-
pend on the reference state and thermal properties of the fluid 
i.e.    and   . In general 1b > 0, for liquids and 1b < 0 for gases 
( the viscosity and thermal conductivity of liquid/gas usually 
decrease/increase with increasing temperature). 
 
The appropriate boundary conditions for the present problem 
are given by:           
 

  ,wu u x ax       ,wv v y by    0w    at  0z   
     ( a , b are positive constants)                                   (8) 
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the governing boundary layer three dimensional  equation 
with temperature dependent heat generation (absorbtion) as 
above in equation (4) , the thermal boundary conditions, de-
pend on the type of heating process under considerations, are 
considered by  
 

2 2
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          (9) 

 
Where A ,  B ,   A  and  B   are two constants and  l  is the 
characteristic length. 
 
     In order to reduce the partial differential equations to ordi-
nary differential equations, we use the following transfor-
mations in this study: 

              u axf  ,       v ayg      

and          w a f g                                                 (10) 

 
 Where   
 

              
a
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                                                                  (11) 

Here  f  and  g  are the dimensionless stream functions,   is 
the similarity variable and prime denotes the differentiation 
with respect to . Using  (10)  and (11) , the incompressibility 
condition (1) is identically satisfied and Equations (2) to (5) 
take the dimensionless form as: 
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The boundary conditions (8) and (9) becomes 
 
    at     0   
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Where the dimensionless parameters are defined as:  
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viscosity. 

 
When 0c  , the problem reduces to the two-dimensional case 
( 0g  ), given by 
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When 1c  , the problem reduces to the axi-symmetric flow, 
where we have ( f g ), the equation becomes 
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The boundary conditions (16) and (17)  becomes 
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The parameters of engineering interest for the present problem 

are the local skin friction coefficients,  
fxC   and  

fyC  along the  

x  direction and  y directions respectively, which are de-

fined as : 
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Where  
wx  is the wall shear stress along the x  direction and 

wy  is the wall shear stress along the y direction. Using 

equations  (10), we obtain the wall skin friction coefficient in  

x   and y directions respectively  as follows: 
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and     

    w
e

u x
R


   is the local Reynolds number.  

 
To assess the heat transfer ability of the medium the local 
Nusselt number and the local heat transfer rate are defined as: 
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3 RESULTS AND DISCUSSION 

 
The system of differential equations (12) to (15) governed by 
boundary conditions (16) and (17) are solved numerically by 
applying an efficient numerical technique based on the fourth 
order Runge-Kutta shooting method and an iterative method. 
It is experienced that the convergence of the iteration process 
is quite rapid. 

       The purpose of this study is to bring out the effects of the 

variable viscosity on the governing flow with the combina-

tions of the other flow parameters. The three dimensional flow 

of the present problem is governed by seven parameters, 

namely K , the viscoelastic parameter,   the heat parameter, 

  the chemical reaction parameter, c  the dimensionless 

stretching ratio, Pr  the Prandtl number, cS  the Schmidt num-

ber and  e  the dimensionless viscosity parameter. An insight 

into the effects of these parameters of the flow field can be 

obtained by the study of the temperature and mass concentra-

tion distributions. 

       The dimensionless temperature     and dimensionless 

mass concentration     have been plotted against the di-

mension   for several sets of the values of the parameters K , 

 , c ,  , Pr , 
cS  and 

e . 

       In Fig 1 we are observing the effect of concentration profile 

with the variation of Schmidt number
cS . The values of  

cS = 1.00,  2.25,  2.75,  4.50,  5.50  with the values of other pa-

rameters  Pr = 3.70,  K = 2.00,   = 0.50,  = 2.00,  c = 0.25 and 

the thermal conductivity parameter  
e =-10. A rise in 

cS  

strongly suppreses concentration levels in the boundary layer 

regime. All profiles decay monotonically from the surface 

(wall) to the free stream. 
cS  embodies the ratio of momentum 

diffusivity ( ) to molecular diffusivity( D ). It is observed that 

the fluids concentration decreases as the mass transfer param-

eters cS  increases.  

      

 
         Fig 1: Effect of Schmidt number  cS  on concentration.    

 

In Fig 2 we study the effect of  e  the variable viscosity prame-

ter on concentration profile. The values of e = -15,  -12, -10  

has been considered and the other parameters are taken as 

Pr = 3.70,  K = 2.00,   = 0.50,  = 2.00,  c = 0.25  and cS = 2.50. 

It is observed that the concentration profile decreases with the 

increase of the variable viscosity parameter e .  
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 Fig 2: Effect of variable viscosity 
e on concentration. 

 
       Fig 3: Effect of viscoelastic parameter K on concentration. 

 
 
Fig 3 illustrates the effects of the viscoelastic parameter K on 
the concentration profile. Substituting various values of 
K =2.00,  3.00,  3.50 at Pr = 3.70, cS  = 2.50,   = 0.50,  = 2.00,  
c = 0.50 and e =-10, it is observed that the concentration pro-
file increases with the increase of viscoelastic parameter K  . 
 
 
In Fig 4, it has been investigated that the concentration profile 
increases with the change of Prandtl number Pr. The study 
revels that concentration increases with the increase of Pr. 
 
 
 

 
        Fig 4: Variation of concentration profile with  Pr. 
 
In Fig 5, the temperature profile for various values of  Pr has 
been studied. It is observed that the temperature profile de-
creases with the increase of the Prandtl number. 
 

 
         Fig 5: Variation of temperature profile with  Pr. 

 

 

Figures 6 and 7 exhibits the effects of heat parameter   on 

temperature distribution.  It is evident from the Fig 6, the tem-

perature distribution      increases with an increase in the 

heat parameter +ve   and the inverse is true seing in Fig 7. 

 
 

 



International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012                                                                                         6 

ISSN 2229-5518 

 

 
IJSER © 2012 

http://www.ijser.org 

 
              Fig 6: Temperature distribution for varies values of the 

heat parameter  (positive). 

 
 

 
         Fig 7: Temperature distribution for varies values of the 

heat parameter  (negative). 

 

In the Fig 8, the effect of dimensionless stretching ratio  c  on 

concentration profile has been studied. It is observed that the 

concentration profile decreases with the increase of starching 

parameter. 

 

     
         Fig 8: Concertration distribution for varies values of the 

dimensionless stretching ratio  c . 

 

In the Fig 9 we observe the effect of chemical reaction parame-

ter  on concentration profile  . Substituting various values 

for Pr = 3.70,  K = 2.00,   = 0.50, cS = 2.50,  c = 0.25 and the 

thermal conductivity parameter  e =-10, it is observed that the 

concentration profile increases with the increase of reaction 

parameter  of the fluid flow. 

 

 
   Fig 9: Concentration distribution for varies values of 

the Chemical reaction parameter  . 

  

Missing values of  0f  ,  0  and  0  for various val-

ues of e , K ,  ,   and  c have been derived. In Table I, miss-

ing values of  0f  ,  0  and  0  were found for e = - 

15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4. It is observed that 

the missing values of  0f  decreases while that of  0  

and  0  increases. In Table II we observed the missing val-

ues of  0f  ,  0  and  0  for K = 2, 2.5, 3, 3.5, 4, 4.5, 5, 

5.5, 6. The study revels that the missing values of  0f   in-
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creases while that of  0  and  0  decreases. 

In Table III it is observed that for increasing values of   c = 0, 
0.25, 0.50, 0.75, 1.00, 1.25 the missing values of  0f    in-
creases while that of  0  and  0  decrease. 
 

Table I: Missing values of  0f  ,  0  and  0  for var-

ious values of 
e  

 
  

e   0f    0   0  

-15 -0.908027 -1.694586 -0.157126 
-14 -0.908397 -1.694487 -0.156923 
-13 -0.908821 -1.694373 -0.156691 
-12 -0.909312 -1.694241 -0.156423 
-11 -0.909887 -1.694087 -0.156107 
-10 -0.910571 -1.693904 -0.155731 
-9 -0.911396 -1.693683 -0.155281 
-8 -0.912412 -1.69341 -0.154724 
-7 -0.913694 -1.693067 -0.154021 
-6 -0.915363 -1.69262 -0.153108 
-5 -0.917623 -1.692016 -0.151872 
-4 -0.920858 -1.691152 -0.150104 

 
 

Table II: Missing values of  0f  ,  0  and  0  for 

various values of K . 

 
 

 
K   0f    0   0  

2.00 
-0.633191 -1.82256 0.150568 

2.50 
-0.628199 -1.823425 0.144856 

3.00 
-0.625143 -1.823882 0.14207 

3.50 
-0.623027 -1.824177 0.140342 

4.00 -0.621465 -1.824385 0.139152 
4.50 

-0.62026 -1.824539 0.138266 
5.00 

-0.619301 -1.824659 0.137588 
5.50 

-0.618520 -1.824755 0.137053 
6.00 

-0.617871 -1.824832 0.136615 

 

  

Table III: Missing values of  0f  ,  0  and  0  for 

various values of c  

 
c   0f    0   0  

0 -0.733158 -1.689918 1.487715 

0.25 -0.722720 -1.743844 1.353018 

0.50 -0.708433 -1.795084 1.237238 

0.75 -0.694258 -1.843970 1.134856 

1.00 -0.680144 -1.891197 1.040672 

1.25 -0.669834 -1.933683 0.973830 

 

4  CONCLUSION 

 
A numerical study of the effect of variable viscosity on bound-
ary layer flow of second order fluids over a stretching surface 
with mass and heat transfer has been offered. 
 
The subsequent outcome may be drawn as: 
 

1. The temperature profile within the boundary flim   
rises for the decreasing values of Prandtl number Pr . 

2. The concentration profile within the boundary flim 

raises considerable for the increasing values of Pr , 

K ,    and decreases for e . 

3. The temperature profile within the boundary flim 

raises considerable for the increasing values of heat 

(Source/sink) parameter . 
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